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6 Scoring, term weighting and the

vector space model

Thus far we have dealt with indexes that support Boolean queries: a docu-
ment either matches or does not match a query. In the case of large document
collections, the resulting number of matching documents can far exceed the
number a human user could possibly sift through. Accordingly, it is essen-
tial for a search engine to rank-order the documents matching a query. To do
this, the search engine computes, for each matching document, a score with
respect to the query at hand. In this chapter we initiate the study of assigning
a score to a (query, document) pair. This chapter consists of three main ideas.

1. We introduce parametric and zone indexes in Section 6.1, which serve
two purposes. First, they allow us to index and retrieve documents by
metadata such as the language in which a document is written. Second,
they give us a simple means for scoring (and thereby ranking) documents
in response to a query.

2. Next, in Section 6.2 we develop the idea of weighting the importance of a
term in a document, based on the statistics of occurrence of the term.

3. In Section 6.3 we show that by viewing each document as a vector of such
weights, we can compute a score between a query and each document.
This view is known as vector space scoring.

Section 6.4 develops several variants of term-weighting for the vector space
model. Chapter 7 develops computational aspects of vector space scoring,
and related topics.

As we develop these ideas, the notion of a query will assume multiple
nuances. In Section 6.1 we consider queries in which specific query terms
occur in specified regions of a matching document. Beginning Section 6.2 we
will in fact relax the requirement of matching specific regions of a document;
instead, we will look at so-called free text queries that simply consist of query
terms with no specification on their relative order, importance or where in a
document they should be found. The bulk of our study of scoring will be in
this latter notion of a query being such a set of terms.
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6.1 Parametric and zone indexes

We have thus far viewed a document as a sequence of terms. In fact, most
documents have additional structure. Digital documents generally encode,
in machine-recognizable form, certain metadata associated with each docu-METADATA

ment. By metadata, we mean specific forms of data about a document, such
as its author(s), title and date of publication. This metadata would generally
include fields such as the date of creation and the format of the document, asFIELD

well the author and possibly the title of the document. The possible values
of a field should be thought of as finite – for instance, the set of all dates of
authorship.

Consider queries of the form “find documents authored by William Shake-
speare in 1601, containing the phrase alas poor Yorick”. Query processing then
consists as usual of postings intersections, except that we may merge post-
ings from standard inverted as well as parametric indexes. There is one para-PARAMETRIC INDEX

metric index for each field (say, date of creation); it allows us to select only
the documents matching a date specified in the query. Figure 6.1 illustrates
the user’s view of such a parametric search. Some of the fields may assume
ordered values, such as dates; in the example query above, the year 1601 is
one such field value. The search engine may support querying ranges on
such ordered values; to this end, a structure like a B-tree may be used for the
field’s dictionary.

Zones are similar to fields, except the contents of a zone can be arbitraryZONE

free text. Whereas a field may take on a relatively small set of values, a zone
can be thought of as an arbitrary, unbounded amount of text. For instance,
document titles and abstracts are generally treated as zones. We may build a
separate inverted index for each zone of a document, to support queries such
as “find documents with merchant in the title and william in the author list and
the phrase gentle rain in the body”. This has the effect of building an index
that looks like Figure 6.2. Whereas the dictionary for a parametric index
comes from a fixed vocabulary (the set of languages, or the set of dates), the
dictionary for a zone index must structure whatever vocabulary stems from
the text of that zone.

In fact, we can reduce the size of the dictionary by encoding the zone in
which a term occurs in the postings. In Figure 6.3 for instance, we show how
occurrences of william in the title and author zones of various documents are
encoded. Such an encoding is useful when the size of the dictionary is a
concern (because we require the dictionary to fit in main memory). But there
is another important reason why the encoding of Figure 6.3 is useful: the
efficient computation of scores using a technique we will call weighted zoneWEIGHTED ZONE

SCORING scoring.
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◮ Figure 6.1 Parametric search. In this example we have a collection with fields al-
lowing us to select publications by zones such as Author and fields such as Language.

william.author 2 3 5 8

william.title 2 4 8 16

william.abstract 11 121 1441 1729

- - - -

- - - -

- - - -

◮ Figure 6.2 Basic zone index ; zones are encoded as extensions of dictionary en-
tries.

william 2.author,2.title 3.author 4.title 5.author- - - -

◮ Figure 6.3 Zone index in which the zone is encoded in the postings rather than
the dictionary.
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6.1.1 Weighted zone scoring

Thus far in Section 6.1 we have focused on retrieving documents based on
Boolean queries on fields and zones. We now turn to a second application of
zones and fields.

Given a Boolean query q and a document d, weighted zone scoring assigns
to the pair (q, d) a score in the interval [0, 1], by computing a linear combina-
tion of zone scores, where each zone of the document contributes a Boolean
value. More specifically, consider a set of documents each of which has ℓ

zones. Let g1, . . . , gℓ ∈ [0, 1] such that ∑
ℓ
i=1 gi = 1. For 1 ≤ i ≤ ℓ, let si be the

Boolean score denoting a match (or absence thereof) between q and the ith
zone. For instance, the Boolean score from a zone could be 1 if all the query
term(s) occur in that zone, and zero otherwise; indeed, it could be any Boo-
lean function that maps the presence of query terms in a zone to 0, 1. Then,
the weighted zone score is defined to be

ℓ

∑
i=1

gisi.(6.1)

Weighted zone scoring is sometimes referred to also as ranked Boolean re-RANKED BOOLEAN

RETRIEVAL trieval.

✎ Example 6.1: Consider the query shakespeare in a collection in which each doc-
ument has three zones: author, title and body. The Boolean score function for a zone
takes on the value 1 if the query term shakespeare is present in the zone, and zero
otherwise. Weighted zone scoring in such a collection would require three weights
g1, g2 and g3, respectively corresponding to the author, title and body zones. Suppose
we set g1 = 0.2, g2 = 0.3 and g3 = 0.5 (so that the three weights add up to 1); this cor-
responds to an application in which a match in the author zone is least important to
the overall score, the title zone somewhat more, and the body contributes even more.

Thus if the term shakespeare were to appear in the title and body zones but not the
author zone of a document, the score of this document would be 0.8.

How do we implement the computation of weighted zone scores? A sim-
ple approach would be to compute the score for each document in turn,
adding in all the contributions from the various zones. However, we now
show how we may compute weighted zone scores directly from inverted in-
dexes. The algorithm of Figure 6.4 treats the case when the query q is a two-
term query consisting of query terms q1 and q2, and the Boolean function is
AND: 1 if both query terms are present in a zone and 0 otherwise. Following
the description of the algorithm, we describe the extension to more complex
queries and Boolean functions.

The reader may have noticed the close similarity between this algorithm
and that in Figure 1.6. Indeed, they represent the same postings traversal,
except that instead of merely adding a document to the set of results for
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ZONESCORE(q1, q2)
1 float scores[N] = [0]
2 constant g[ℓ]
3 p1 ← postings(q1)
4 p2 ← postings(q2)
5 // scores[] is an array with a score entry for each document, initialized to zero.
6 //p1 and p2 are initialized to point to the beginning of their respective postings.
7 //Assume g[] is initialized to the respective zone weights.
8 while p1 6= NIL and p2 6= NIL

9 do if docID(p1) = docID(p2)
10 then scores[docID(p1)]← WEIGHTEDZONE(p1, p2, g)
11 p1 ← next(p1)
12 p2 ← next(p2)
13 else if docID(p1) < docID(p2)
14 then p1 ← next(p1)
15 else p2 ← next(p2)
16 return scores

◮ Figure 6.4 Algorithm for computing the weighted zone score from two postings
lists. Function WEIGHTEDZONE (not shown here) is assumed to compute the inner
loop of Equation 6.1.

a Boolean AND query, we now compute a score for each such document.
Some literature refers to the array scores[] above as a set of accumulators. TheACCUMULATOR

reason for this will be clear as we consider more complex Boolean functions
than the AND; thus we may assign a non-zero score to a document even if it
does not contain all query terms.

6.1.2 Learning weights

How do we determine the weights gi for weighted zone scoring? These
weights could be specified by an expert (or, in principle, the user); but in-
creasingly, these weights are “learned” using training examples that have
been judged editorially. This latter methodology falls under a general class
of approaches to scoring and ranking in information retrieval, known as
machine-learned relevance. We provide a brief introduction to this topic hereMACHINE-LEARNED

RELEVANCE because weighted zone scoring presents a clean setting for introducing it; a
complete development demands an understanding of machine learning and
is deferred to Chapter 15.

1. We are provided with a set of training examples, each of which is a tu-
ple consisting of a query q and a document d, together with a relevance
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judgment for d on q. In the simplest form, each relevance judgments is ei-
ther Relevant or Non-relevant. More sophisticated implementations of the
methodology make use of more nuanced judgments.

2. The weights gi are then “learned” from these examples, in order that the
learned scores approximate the relevance judgments in the training exam-
ples.

For weighted zone scoring, the process may be viewed as learning a lin-
ear function of the Boolean match scores contributed by the various zones.
The expensive component of this methodology is the labor-intensive assem-
bly of user-generated relevance judgments from which to learn the weights,
especially in a collection that changes frequently (such as the Web). We now
detail a simple example that illustrates how we can reduce the problem of
learning the weights gi to a simple optimization problem.

We now consider a simple case of weighted zone scoring, where each doc-
ument has a title zone and a body zone. Given a query q and a document d, we
use the given Boolean match function to compute Boolean variables sT(d, q)
and sB(d, q), depending on whether the title (respectively, body) zone of d
matches query q. For instance, the algorithm in Figure 6.4 uses an AND of
the query terms for this Boolean function. We will compute a score between
0 and 1 for each (document, query) pair using sT(d, q) and sB(d, q) by using
a constant g ∈ [0, 1], as follows:

score(d, q) = g · sT(d, q) + (1− g)sB(d, q).(6.2)

We now describe how to determine the constant g from a set of training ex-
amples, each of which is a triple of the form Φj = (dj, qj, r(dj, qj)). In each
training example, a given training document dj and a given training query qj

are assessed by a human editor who delivers a relevance judgment r(dj, qj)
that is either Relevant or Non-relevant. This is illustrated in Figure 6.5, where
seven training examples are shown.

For each training example Φj we have Boolean values sT(dj, qj) and sB(dj, qj)
that we use to compute a score from (6.2)

score(dj, qj) = g · sT(dj, qj) + (1− g)sB(dj, qj).(6.3)

We now compare this computed score to the human relevance judgment for
the same document-query pair (dj, qj); to this end, we will quantize each
Relevant judgment as a 1 and each Non-relevant judgment as a 0. Suppose
that we define the error of the scoring function with weight g as

ε(g, Φj) = (r(dj, qj)− score(dj, qj))
2,
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Example DocID Query sT sB Judgment
Φ1 37 linux 1 1 Relevant
Φ2 37 penguin 0 1 Non-relevant
Φ3 238 system 0 1 Relevant
Φ4 238 penguin 0 0 Non-relevant
Φ5 1741 kernel 1 1 Relevant
Φ6 2094 driver 0 1 Relevant
Φ7 3191 driver 1 0 Non-relevant

◮ Figure 6.5 An illustration of training examples.

sT sB Score
0 0 0
0 1 1− g
1 0 g
1 1 1

◮ Figure 6.6 The four possible combinations of sT and sB.

where we have quantized the editorial relevance judgment r(dj, qj) to 0 or 1.
Then, the total error of a set of training examples is given by

∑
j

ε(g, Φj).(6.4)

The problem of learning the constant g from the given training examples
then reduces to picking the value of g that minimizes the total error in (6.4).

Picking the best value of g in (6.4) in the formulation of Section 6.1.3 re-
duces to the problem of minimizing a quadratic function of g over the inter-
val [0, 1]. This reduction is detailed in Section 6.1.3.

✄ 6.1.3 The optimal weight g

We begin by noting that for any training example Φj for which sT(dj, qj) = 0
and sB(dj, qj) = 1, the score computed by Equation (6.2) is 1− g. In similar
fashion, we may write down the score computed by Equation (6.2) for the
three other possible combinations of sT(dj, qj) and sB(dj, qj); this is summa-
rized in Figure 6.6.

Let n01r (respectively, n01n) denote the number of training examples for
which sT(dj, qj) = 0 and sB(dj, qj) = 1 and the editorial judgment is Relevant
(respectively, Non-relevant). Then the contribution to the total error in Equa-
tion (6.4) from training examples for which sT(dj, qj) = 0 and sB(dj, qj) = 1
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is

[1− (1− g)]2n01r + [0− (1− g)]2n01n.

By writing in similar fashion the error contributions from training examples
of the other three combinations of values for sT(dj, qj) and sB(dj, qj) (and
extending the notation in the obvious manner), the total error corresponding
to Equation (6.4) is

(n01r + n10n)g2 + (n10r + n01n)(1− g)2 + n00r + n11n.(6.5)

By differentiating Equation (6.5) with respect to g and setting the result to
zero, it follows that the optimal value of g is

n10r + n01n

n10r + n10n + n01r + n01n
.(6.6)

? Exercise 6.1

When using weighted zone scoring, is it necessary for all zones to use the same Boo-
lean match function?

Exercise 6.2

In Example 6.1 above with weights g1 = 0.2, g2 = 0.31 and g3 = 0.49, what are all the
distinct score values a document may get?

Exercise 6.3

Rewrite the algorithm in Figure 6.4 to the case of more than two query terms.

Exercise 6.4

Write pseudocode for the function WeightedZone for the case of two postings lists in
Figure 6.4.

Exercise 6.5

Apply Equation 6.6 to the sample training set in Figure 6.5 to estimate the best value
of g for this sample.

Exercise 6.6

For the value of g estimated in Exercise 6.5, compute the weighted zone score for each
(query, document) example. How do these scores relate to the relevance judgments
in Figure 6.5 (quantized to 0/1)?

Exercise 6.7

Why does the expression for g in (6.6) not involve training examples in which sT(dt, qt)
and sB(dt, qt) have the same value?
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6.2 Term frequency and weighting

Thus far, scoring has hinged on whether or not a query term is present in
a zone within a document. We take the next logical step: a document or
zone that mentions a query term more often has more to do with that query
and therefore should receive a higher score. To motivate this, we recall the
notion of a free text query introduced in Section 1.4: a query in which the
terms of the query are typed freeform into the search interface, without any
connecting search operators (such as Boolean operators). This query style,
which is extremely popular on the web, views the query as simply a set of
words. A plausible scoring mechanism then is to compute a score that is the
sum, over the query terms, of the match scores between each query term and
the document.

Towards this end, we assign to each term in a document a weight for that
term, that depends on the number of occurrences of the term in the doc-
ument. We would like to compute a score between a query term t and a
document d, based on the weight of t in d. The simplest approach is to assign
the weight to be equal to the number of occurrences of term t in document d.
This weighting scheme is referred to as term frequency and is denoted tft,d,TERM FREQUENCY

with the subscripts denoting the term and the document in order.
For a document d, the set of weights determined by the tf weights above

(or indeed any weighting function that maps the number of occurrences of t
in d to a positive real value) may be viewed as a quantitative digest of that
document. In this view of a document, known in the literature as the bagBAG OF WORDS

of words model, the exact ordering of the terms in a document is ignored but
the number of occurrences of each term is material (in contrast to Boolean
retrieval). We only retain information on the number of occurrences of each
term. Thus, the document “Mary is quicker than John” is, in this view, iden-
tical to the document “John is quicker than Mary”. Nevertheless, it seems
intuitive that two documents with similar bag of words representations are
similar in content. We will develop this intuition further in Section 6.3.

Before doing so we first study the question: are all words in a document
equally important? Clearly not; in Section 2.2.2 (page 27) we looked at the
idea of stop words – words that we decide not to index at all, and therefore do
not contribute in any way to retrieval and scoring.

6.2.1 Inverse document frequency

Raw term frequency as above suffers from a critical problem: all terms are
considered equally important when it comes to assessing relevancy on a
query. In fact certain terms have little or no discriminating power in de-
termining relevance. For instance, a collection of documents on the auto
industry is likely to have the term auto in almost every document. To this
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Word cf df
try 10422 8760
insurance 10440 3997

◮ Figure 6.7 Collection frequency (cf) and document frequency (df) behave differ-
ently, as in this example from the Reuters collection.

end, we introduce a mechanism for attenuating the effect of terms that occur
too often in the collection to be meaningful for relevance determination. An
immediate idea is to scale down the term weights of terms with high collec-
tion frequency, defined to be the total number of occurrences of a term in the
collection. The idea would be to reduce the tf weight of a term by a factor
that grows with its collection frequency.

Instead, it is more commonplace to use for this purpose the document fre-DOCUMENT

FREQUENCY quency dft, defined to be the number of documents in the collection that con-
tain a term t. This is because in trying to discriminate between documents
for the purpose of scoring it is better to use a document-level statistic (such
as the number of documents containing a term) than to use a collection-wide
statistic for the term. The reason to prefer df to cf is illustrated in Figure 6.7,
where a simple example shows that collection frequency (cf) and document
frequency (df) can behave rather differently. In particular, the cf values for
both try and insurance are roughly equal, but their df values differ signifi-
cantly. Intuitively, we want the few documents that contain insurance to get
a higher boost for a query on insurance than the many documents containing
try get from a query on try.

How is the document frequency df of a term used to scale its weight? De-
noting as usual the total number of documents in a collection by N, we define
the inverse document frequency (idf) of a term t as follows:INVERSE DOCUMENT

FREQUENCY

idft = log
N

dft
.(6.7)

Thus the idf of a rare term is high, whereas the idf of a frequent term is
likely to be low. Figure 6.8 gives an example of idf’s in the Reuters collection
of 806,791 documents; in this example logarithms are to the base 10. In fact,
as we will see in Exercise 6.12, the precise base of the logarithm is not material
to ranking. We will give on page 227 a justification of the particular form in
Equation (6.7).

6.2.2 Tf-idf weighting

We now combine the definitions of term frequency and inverse document
frequency, to produce a composite weight for each term in each document.
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term dft idft

car 18,165 1.65
auto 6723 2.08
insurance 19,241 1.62
best 25,235 1.5

◮ Figure 6.8 Example of idf values. Here we give the idf’s of terms with various
frequencies in the Reuters collection of 806,791 documents.

The tf-idf weighting scheme assigns to term t a weight in document d givenTF-IDF

by

tf-idft,d = tft,d × idft.(6.8)

In other words, tf-idft,d assigns to term t a weight in document d that is

1. highest when t occurs many times within a small number of documents
(thus lending high discriminating power to those documents);

2. lower when the term occurs fewer times in a document, or occurs in many
documents (thus offering a less pronounced relevance signal);

3. lowest when the term occurs in virtually all documents.

At this point, we may view each document as a vector with one componentDOCUMENT VECTOR

corresponding to each term in the dictionary, together with a weight for each
component that is given by (6.8). For dictionary terms that do not occur in
a document, this weight is zero. This vector form will prove to be crucial to
scoring and ranking; we will develop these ideas in Section 6.3. As a first
step, we introduce the overlap score measure: the score of a document d is the
sum, over all query terms, of the number of times each of the query terms
occurs in d. We can refine this idea so that we add up not the number of
occurrences of each query term t in d, but instead the tf-idf weight of each
term in d.

Score(q, d) = ∑
t∈q

tf-idft,d.(6.9)

In Section 6.3 we will develop a more rigorous form of Equation (6.9).

? Exercise 6.8

Why is the idf of a term always finite?

Exercise 6.9

What is the idf of a term that occurs in every document? Compare this with the use
of stop word lists.
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Doc1 Doc2 Doc3
car 27 4 24
auto 3 33 0
insurance 0 33 29
best 14 0 17

◮ Figure 6.9 Table of tf values for Exercise 6.10.

Exercise 6.10

Consider the table of term frequencies for 3 documents denoted Doc1, Doc2, Doc3 in
Figure 6.9. Compute the tf-idf weights for the terms car, auto, insurance, best, for each
document, using the idf values from Figure 6.8.

Exercise 6.11

Can the tf-idf weight of a term in a document exceed 1?

Exercise 6.12

How does the base of the logarithm in (6.7) affect the score calculation in (6.9)? How
does the base of the logarithm affect the relative scores of two documents on a given
query?

Exercise 6.13

If the logarithm in (6.7) is computed base 2, suggest a simple approximation to the idf
of a term.

6.3 The vector space model for scoring

In Section 6.2 (page 117) we developed the notion of a document vector that
captures the relative importance of the terms in a document. The representa-
tion of a set of documents as vectors in a common vector space is known as
the vector space model and is fundamental to a host of information retrieval op-VECTOR SPACE MODEL

erations ranging from scoring documents on a query, document classification
and document clustering. We first develop the basic ideas underlying vector
space scoring; a pivotal step in this development is the view (Section 6.3.2)
of queries as vectors in the same vector space as the document collection.

6.3.1 Dot products

We denote by ~V(d) the vector derived from document d, with one com-
ponent in the vector for each dictionary term. Unless otherwise specified,
the reader may assume that the components are computed using the tf-idf
weighting scheme, although the particular weighting scheme is immaterial
to the discussion that follows. The set of documents in a collection then may
be viewed as a set of vectors in a vector space, in which there is one axis for
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0 1
0

1

jealous

gossip

~v(q)

~v(d1)

~v(d2)

~v(d3)

θ

◮ Figure 6.10 Cosine similarity illustrated. sim(d1, d2) = cos θ.

each term. This representation loses the relative ordering of the terms in each
document; recall our example from Section 6.2 (page 117), where we pointed
out that the documents Mary is quicker than John and John is quicker than Mary
are identical in such a bag of words representation.

How do we quantify the similarity between two documents in this vector
space? A first attempt might consider the magnitude of the vector difference
between two document vectors. This measure suffers from a drawback: two
documents with very similar content can have a significant vector difference
simply because one is much longer than the other. Thus the relative distribu-
tions of terms may be identical in the two documents, but the absolute term
frequencies of one may be far larger.

To compensate for the effect of document length, the standard way of
quantifying the similarity between two documents d1 and d2 is to compute

the cosine similarity of their vector representations ~V(d1) and ~V(d2)COSINE SIMILARITY

sim(d1, d2) =
~V(d1) · ~V(d2)

|~V(d1)||~V(d2)|
,(6.10)

where the numerator represents the dot product (also known as the inner prod-DOT PRODUCT

uct) of the vectors ~V(d1) and ~V(d2), while the denominator is the product of
their Euclidean lengths. The dot product ~x · ~y of two vectors is defined asEUCLIDEAN LENGTH

∑
M
i=1 xiyi. Let ~V(d) denote the document vector for d, with M components

~V1(d) . . . ~VM(d). The Euclidean length of d is defined to be
√

∑
M
i=1

~V2
i (d).

The effect of the denominator of Equation (6.10) is thus to length-normalizeLENGTH-
NORMALIZATION the vectors ~V(d1) and ~V(d2) to unit vectors ~v(d1) = ~V(d1)/|~V(d1)| and
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Doc1 Doc2 Doc3
car 0.88 0.09 0.58
auto 0.10 0.71 0
insurance 0 0.71 0.70
best 0.46 0 0.41

◮ Figure 6.11 Euclidean normalized tf values for documents in Figure 6.9.

term SaS PaP WH
affection 115 58 20
jealous 10 7 11
gossip 2 0 6

◮ Figure 6.12 Term frequencies in three novels. The novels are Austen’s Sense and
Sensibility, Pride and Prejudice and Brontë’s Wuthering Heights.

~v(d2) = ~V(d2)/|~V(d2)|. We can then rewrite (6.10) as

sim(d1, d2) = ~v(d1) ·~v(d2).(6.11)

✎ Example 6.2: Consider the documents in Figure 6.9. We now apply Euclidean
normalization to the tf values from the table, for each of the three documents in the

table. The quantity
√

∑
M
i=1

~V2
i (d) has the values 30.56, 46.84 and 41.30 respectively

for Doc1, Doc2 and Doc3. The resulting Euclidean normalized tf values for these
documents are shown in Figure 6.11.

Thus, (6.11) can be viewed as the dot product of the normalized versions of
the two document vectors. This measure is the cosine of the angle θ between
the two vectors, shown in Figure 6.10. What use is the similarity measure
sim(d1, d2)? Given a document d (potentially one of the di in the collection),
consider searching for the documents in the collection most similar to d. Such
a search is useful in a system where a user may identify a document and
seek others like it – a feature available in the results lists of search engines
as a more like this feature. We reduce the problem of finding the document(s)
most similar to d to that of finding the di with the highest dot products (sim
values)~v(d) ·~v(di). We could do this by computing the dot products between
~v(d) and each of ~v(d1), . . . ,~v(dN), then picking off the highest resulting sim
values.

✎ Example 6.3: Figure 6.12 shows the number of occurrences of three terms (affection,
jealous and gossip) in each of the following three novels: Jane Austen’s Sense and Sensi-
bility (SaS) and Pride and Prejudice (PaP) and Emily Brontë’s Wuthering Heights (WH).
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term SaS PaP WH
affection 0.996 0.993 0.847
jealous 0.087 0.120 0.466
gossip 0.017 0 0.254

◮ Figure 6.13 Term vectors for the three novels of Figure 6.12. These are based on
raw term frequency only and are normalized as if these were the only terms in the
collection. (Since affection and jealous occur in all three documents, their tf-idf weight
would be 0 in most formulations.)

Of course, there are many other terms occurring in each of these novels. In this ex-
ample we represent each of these novels as a unit vector in three dimensions, corre-
sponding to these three terms (only); we use raw term frequencies here, with no idf
multiplier. The resulting weights are as shown in Figure 6.13.

Now consider the cosine similarities between pairs of the resulting three-dimensional
vectors. A simple computation shows that sim(~v(SAS), ~v(PAP)) is 0.999, whereas
sim(~v(SAS), ~v(WH)) is 0.888; thus, the two books authored by Austen (SaS and PaP)
are considerably closer to each other than to Brontë’s Wuthering Heights. In fact, the
similarity between the first two is almost perfect (when restricted to the three terms
we consider). Here we have considered tf weights, but we could of course use other
term weight functions.

Viewing a collection of N documents as a collection of vectors leads to a
natural view of a collection as a term-document matrix: this is an M×N matrixTERM-DOCUMENT

MATRIX whose rows represent the M terms (dimensions) of the N columns, each of
which corresponds to a document. As always, the terms being indexed could
be stemmed before indexing; for instance, jealous and jealousy would under
stemming be considered as a single dimension. This matrix view will prove
to be useful in Chapter 18.

6.3.2 Queries as vectors

There is a far more compelling reason to represent documents as vectors:
we can also view a query as a vector. Consider the query q = jealous gossip.
This query turns into the unit vector ~v(q) = (0, 0.707, 0.707) on the three
coordinates of Figures 6.12 and 6.13. The key idea now: to assign to each
document d a score equal to the dot product

~v(q) ·~v(d).

In the example of Figure 6.13, Wuthering Heights is the top-scoring docu-
ment for this query with a score of 0.509, with Pride and Prejudice a distant
second with a score of 0.085, and Sense and Sensibility last with a score of
0.074. This simple example is somewhat misleading: the number of dimen-
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sions in practice will be far larger than three: it will equal the vocabulary size
M.

To summarize, by viewing a query as a “bag of words”, we are able to
treat it as a very short document. As a consequence, we can use the cosine
similarity between the query vector and a document vector as a measure of
the score of the document for that query. The resulting scores can then be
used to select the top-scoring documents for a query. Thus we have

score(q, d) =
~V(q) · ~V(d)

|~V(q)||~V(d)|
.(6.12)

A document may have a high cosine score for a query even if it does not
contain all query terms. Note that the preceding discussion does not hinge
on any specific weighting of terms in the document vector, although for the
present we may think of them as either tf or tf-idf weights. In fact, a number
of weighting schemes are possible for query as well as document vectors, as
illustrated in Example 6.4 and developed further in Section 6.4.

Computing the cosine similarities between the query vector and each doc-
ument vector in the collection, sorting the resulting scores and selecting the
top K documents can be expensive — a single similarity computation can
entail a dot product in tens of thousands of dimensions, demanding tens of
thousands of arithmetic operations. In Section 7.1 we study how to use an in-
verted index for this purpose, followed by a series of heuristics for improving
on this.

✎ Example 6.4: We now consider the query best car insurance on a fictitious collection
with N = 1,000,000 documents where the document frequencies of auto, best, car and
insurance are respectively 5000, 50000, 10000 and 1000.

term query document product
tf df idf wt,q tf wf wt,d

auto 0 5000 2.3 0 1 1 0.41 0
best 1 50000 1.3 1.3 0 0 0 0
car 1 10000 2.0 2.0 1 1 0.41 0.82
insurance 1 1000 3.0 3.0 2 2 0.82 2.46

In this example the weight of a term in the query is simply the idf (and zero for a
term not in the query, such as auto); this is reflected in the column header wt,q (the en-
try for auto is zero because the query does not contain the termauto). For documents,
we use tf weighting with no use of idf but with Euclidean normalization. The former
is shown under the column headed wf, while the latter is shown under the column
headed wt,d. Invoking (6.9) now gives a net score of 0 + 0 + 0.82 + 2.46 = 3.28.

6.3.3 Computing vector scores

In a typical setting we have a collection of documents each represented by a
vector, a free text query represented by a vector, and a positive integer K. We
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COSINESCORE(q)
1 float Scores[N] = 0
2 Initialize Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d, tft,d) in postings list
6 do Scores[d] += wft,d ×wt,q

7 Read the array Length[d]
8 for each d
9 do Scores[d] = Scores[d]/Length[d]

10 return Top K components of Scores[]

◮ Figure 6.14 The basic algorithm for computing vector space scores.

seek the K documents of the collection with the highest vector space scores on
the given query. We now initiate the study of determining the K documents
with the highest vector space scores for a query. Typically, we seek these
K top documents in ordered by decreasing score; for instance many search
engines use K = 10 to retrieve and rank-order the first page of the ten best
results. Here we give the basic algorithm for this computation; we develop a
fuller treatment of efficient techniques and approximations in Chapter 7.

Figure 6.14 gives the basic algorithm for computing vector space scores.
The array Length holds the lengths (normalization factors) for each of the N
documents, whereas the array Scores holds the scores for each of the docu-
ments. When the scores are finally computed in Step 9, all that remains in
Step 10 is to pick off the K documents with the highest scores.

The outermost loop beginning Step 3 repeats the updating of Scores, iter-
ating over each query term t in turn. In Step 5 we calculate the weight in
the query vector for term t. Steps 6-8 update the score of each document by
adding in the contribution from term t. This process of adding in contribu-
tions one query term at a time is sometimes known as term-at-a-time scoringTERM-AT-A-TIME

or accumulation, and the N elements of the array Scores are therefore known
as accumulators. For this purpose, it would appear necessary to store, withACCUMULATOR

each postings entry, the weight wft,d of term t in document d (we have thus
far used either tf or tf-idf for this weight, but leave open the possibility of
other functions to be developed in Section 6.4). In fact this is wasteful, since
storing this weight may require a floating point number. Two ideas help alle-
viate this space problem. First, if we are using inverse document frequency,
we need not precompute idft; it suffices to store N/dft at the head of the
postings for t. Second, we store the term frequency tft,d for each postings en-
try. Finally, Step 12 extracts the top K scores – this requires a priority queue



Online edition (c)
2009 Cambridge UP

126 6 Scoring, term weighting and the vector space model

data structure, often implemented using a heap. Such a heap takes no more
than 2N comparisons to construct, following which each of the K top scores
can be extracted from the heap at a cost of O(log N) comparisons.

Note that the general algorithm of Figure 6.14 does not prescribe a specific
implementation of how we traverse the postings lists of the various query
terms; we may traverse them one term at a time as in the loop beginning
at Step 3, or we could in fact traverse them concurrently as in Figure 1.6. In
such a concurrent postings traversal we compute the scores of one document
at a time, so that it is sometimes called document-at-a-time scoring. We willDOCUMENT-AT-A-TIME

say more about this in Section 7.1.5.

? Exercise 6.14

If we were to stem jealous and jealousy to a common stem before setting up the vector
space, detail how the definitions of tf and idf should be modified.

Exercise 6.15

Recall the tf-idf weights computed in Exercise 6.10. Compute the Euclidean nor-
malized document vectors for each of the documents, where each vector has four
components, one for each of the four terms.

Exercise 6.16

Verify that the sum of the squares of the components of each of the document vectors
in Exercise 6.15 is 1 (to within rounding error). Why is this the case?

Exercise 6.17

With term weights as computed in Exercise 6.15, rank the three documents by com-
puted score for the query car insurance, for each of the following cases of term weight-
ing in the query:

1. The weight of a term is 1 if present in the query, 0 otherwise.

2. Euclidean normalized idf.

6.4 Variant tf-idf functions

For assigning a weight for each term in each document, a number of alterna-
tives to tf and tf-idf have been considered. We discuss some of the principal
ones here; a more complete development is deferred to Chapter 11. We will
summarize these alternatives in Section 6.4.3 (page 128).

6.4.1 Sublinear tf scaling

It seems unlikely that twenty occurrences of a term in a document truly carry
twenty times the significance of a single occurrence. Accordingly, there has
been considerable research into variants of term frequency that go beyond
counting the number of occurrences of a term. A common modification is
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to use instead the logarithm of the term frequency, which assigns a weight
given by

wft,d =

{

1 + log tft,d if tft,d > 0
0 otherwise

.(6.13)

In this form, we may replace tf by some other function wf as in (6.13), to
obtain:

wf-idft,d = wft,d × idft.(6.14)

Equation (6.9) can then be modified by replacing tf-idf by wf-idf as defined
in (6.14).

6.4.2 Maximum tf normalization

One well-studied technique is to normalize the tf weights of all terms occur-
ring in a document by the maximum tf in that document. For each document
d, let tfmax(d) = maxτ∈d tfτ,d, where τ ranges over all terms in d. Then, we
compute a normalized term frequency for each term t in document d by

ntft,d = a + (1− a)
tft,d

tfmax(d)
,(6.15)

where a is a value between 0 and 1 and is generally set to 0.4, although some
early work used the value 0.5. The term a in (6.15) is a smoothing term whoseSMOOTHING

role is to damp the contribution of the second term – which may be viewed as
a scaling down of tf by the largest tf value in d. We will encounter smoothing
further in Chapter 13 when discussing classification; the basic idea is to avoid
a large swing in ntft,d from modest changes in tft,d (say from 1 to 2). The main
idea of maximum tf normalization is to mitigate the following anomaly: we
observe higher term frequencies in longer documents, merely because longer
documents tend to repeat the same words over and over again. To appreciate
this, consider the following extreme example: supposed we were to take a
document d and create a new document d′ by simply appending a copy of d
to itself. While d′ should be no more relevant to any query than d is, the use
of (6.9) would assign it twice as high a score as d. Replacing tf-idft,d in (6.9) by
ntf-idft,d eliminates the anomaly in this example. Maximum tf normalization
does suffer from the following issues:

1. The method is unstable in the following sense: a change in the stop word
list can dramatically alter term weightings (and therefore ranking). Thus,
it is hard to tune.

2. A document may contain an outlier term with an unusually large num-
ber of occurrences of that term, not representative of the content of that
document.
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Term frequency Document frequency Normalization
n (natural) tft,d n (no) 1 n (none) 1

l (logarithm) 1 + log(tft,d) t (idf) log N
dft

c (cosine) 1√
w2

1+w2
2+...+w2

M

a (augmented) 0.5 +
0.5×tft,d

maxt(tft,d)
p (prob idf) max{0, log N−dft

dft
} u (pivoted

unique)
1/u (Section 6.4.4)

b (boolean)

{

1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα, α < 1

L (log ave)
1+log(tft,d)

1+log(avet∈d(tft,d))

◮ Figure 6.15 SMART notation for tf-idf variants. Here CharLength is the number
of characters in the document.

3. More generally, a document in which the most frequent term appears
roughly as often as many other terms should be treated differently from
one with a more skewed distribution.

6.4.3 Document and query weighting schemes

Equation (6.12) is fundamental to information retrieval systems that use any
form of vector space scoring. Variations from one vector space scoring method

to another hinge on the specific choices of weights in the vectors ~V(d) and
~V(q). Figure 6.15 lists some of the principal weighting schemes in use for

each of ~V(d) and ~V(q), together with a mnemonic for representing a spe-
cific combination of weights; this system of mnemonics is sometimes called
SMART notation, following the authors of an early text retrieval system. The
mnemonic for representing a combination of weights takes the form ddd.qqq
where the first triplet gives the term weighting of the document vector, while
the second triplet gives the weighting in the query vector. The first letter in
each triplet specifies the term frequency component of the weighting, the
second the document frequency component, and the third the form of nor-
malization used. It is quite common to apply different normalization func-

tions to ~V(d) and ~V(q). For example, a very standard weighting scheme
is lnc.ltc, where the document vector has log-weighted term frequency, no
idf (for both effectiveness and efficiency reasons), and cosine normalization,
while the query vector uses log-weighted term frequency, idf weighting, and
cosine normalization.
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✄ 6.4.4 Pivoted normalized document length

In Section 6.3.1 we normalized each document vector by the Euclidean length
of the vector, so that all document vectors turned into unit vectors. In doing
so, we eliminated all information on the length of the original document;
this masks some subtleties about longer documents. First, longer documents
will – as a result of containing more terms – have higher tf values. Second,
longer documents contain more distinct terms. These factors can conspire to
raise the scores of longer documents, which (at least for some information
needs) is unnatural. Longer documents can broadly be lumped into two cat-
egories: (1) verbose documents that essentially repeat the same content – in
these, the length of the document does not alter the relative weights of dif-
ferent terms; (2) documents covering multiple different topics, in which the
search terms probably match small segments of the document but not all of
it – in this case, the relative weights of terms are quite different from a single
short document that matches the query terms. Compensating for this phe-
nomenon is a form of document length normalization that is independent of
term and document frequencies. To this end, we introduce a form of normal-
izing the vector representations of documents in the collection, so that the
resulting “normalized” documents are not necessarily of unit length. Then,
when we compute the dot product score between a (unit) query vector and
such a normalized document, the score is skewed to account for the effect
of document length on relevance. This form of compensation for document
length is known as pivoted document length normalization.PIVOTED DOCUMENT

LENGTH

NORMALIZATION
Consider a document collection together with an ensemble of queries for

that collection. Suppose that we were given, for each query q and for each
document d, a Boolean judgment of whether or not d is relevant to the query
q; in Chapter 8 we will see how to procure such a set of relevance judgments
for a query ensemble and a document collection. Given this set of relevance
judgments, we may compute a probability of relevance as a function of docu-
ment length, averaged over all queries in the ensemble. The resulting plot
may look like the curve drawn in thick lines in Figure 6.16. To compute this
curve, we bucket documents by length and compute the fraction of relevant
documents in each bucket, then plot this fraction against the median docu-
ment length of each bucket. (Thus even though the “curve” in Figure 6.16
appears to be continuous, it is in fact a histogram of discrete buckets of doc-
ument length.)

On the other hand, the curve in thin lines shows what might happen with
the same documents and query ensemble if we were to use relevance as pre-
scribed by cosine normalization Equation (6.12) – thus, cosine normalization
has a tendency to distort the computed relevance vis-à-vis the true relevance,
at the expense of longer documents. The thin and thick curves crossover at a
point p corresponding to document length ℓp, which we refer to as the pivot
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◮ Figure 6.16 Pivoted document length normalization.

length; dashed lines mark this point on the x− and y− axes. The idea of
pivoted document length normalization would then be to “rotate” the co-
sine normalization curve counter-clockwise about p so that it more closely
matches thick line representing the relevance vs. document length curve.
As mentioned at the beginning of this section, we do so by using in Equa-

tion (6.12) a normalization factor for each document vector ~V(d) that is not
the Euclidean length of that vector, but instead one that is larger than the Eu-
clidean length for documents of length less than ℓp, and smaller for longer
documents.

To this end, we first note that the normalizing term for ~V(d) in the de-

nominator of Equation (6.12) is its Euclidean length, denoted |~V(d)|. In the
simplest implementation of pivoted document length normalization, we use

a normalization factor in the denominator that is linear in |~V(d)|, but one

of slope < 1 as in Figure 6.17. In this figure, the x− axis represents |~V(d)|,
while the y−axis represents possible normalization factors we can use. The
thin line y = x depicts the use of cosine normalization. Notice the following
aspects of the thick line representing pivoted length normalization:

1. It is linear in the document length and has the form

a|~V(d)|+ (1− a)piv,(6.16)
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◮ Figure 6.17 Implementing pivoted document length normalization by linear scal-
ing.

where piv is the cosine normalization value at which the two curves in-
tersect.

2. Its slope is a < 1 and (3) it crosses the y = x line at piv.

It has been argued that in practice, Equation (6.16) is well approximated by

aud + (1− a)piv,

where ud is the number of unique terms in document d.
Of course, pivoted document length normalization is not appropriate for

all applications. For instance, in a collection of answers to frequently asked
questions (say, at a customer service website), relevance may have little to
do with document length. In other cases the dependency may be more com-
plex than can be accounted for by a simple linear pivoted normalization. In
such cases, document length can be used as a feature in the machine learning
based scoring approach of Section 6.1.2.

? Exercise 6.18

One measure of the similarity of two vectors is the Euclidean distance (or L2 distance)EUCLIDEAN DISTANCE

between them:

|~x−~y| =

√

√

√

√

M

∑
i=1

(xi − yi)2
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query document
word tf wf df idf qi = wf-idf tf wf di = normalized wf qi · di

digital 10,000
video 100,000
cameras 50,000

◮ Table 6.1 Cosine computation for Exercise 6.19.

Given a query q and documents d1, d2, . . ., we may rank the documents di in order
of increasing Euclidean distance from q. Show that if q and the di are all normalized
to unit vectors, then the rank ordering produced by Euclidean distance is identical to
that produced by cosine similarities.

Exercise 6.19

Compute the vector space similarity between the query “digital cameras” and the
document “digital cameras and video cameras” by filling out the empty columns in
Table 6.1. Assume N = 10,000,000, logarithmic term weighting (wf columns) for
query and document, idf weighting for the query only and cosine normalization for
the document only. Treat and as a stop word. Enter term counts in the tf columns.
What is the final similarity score?

Exercise 6.20

Show that for the query affection, the relative ordering of the scores of the three doc-
uments in Figure 6.13 is the reverse of the ordering of the scores for the query jealous
gossip.

Exercise 6.21

In turning a query into a unit vector in Figure 6.13, we assigned equal weights to each
of the query terms. What other principled approaches are plausible?

Exercise 6.22

Consider the case of a query term that is not in the set of M indexed terms; thus our

standard construction of the query vector results in ~V(q) not being in the vector space
created from the collection. How would one adapt the vector space representation to
handle this case?

Exercise 6.23

Refer to the tf and idf values for four terms and three documents in Exercise 6.10.
Compute the two top scoring documents on the query best car insurance for each of
the following weighing schemes: (i) nnn.atc ; (ii) ntc.atc .

Exercise 6.24

Suppose that the word coyote does not occur in the collection used in Exercises 6.10
and 6.23. How would one compute ntc.atc scores for the query coyote insurance?



Online edition (c)
2009 Cambridge UP

6.5 References and further reading 133

6.5 References and further reading

Chapter 7 develops the computational aspects of vector space scoring. Luhn
(1957; 1958) describes some of the earliest reported applications of term weight-
ing. His paper dwells on the importance of medium frequency terms (terms
that are neither too commonplace nor too rare) and may be thought of as an-
ticipating tf-idf and related weighting schemes. Spärck Jones (1972) builds
on this intuition through detailed experiments showing the use of inverse
document frequency in term weighting. A series of extensions and theoret-
ical justifications of idf are due to Salton and Buckley (1987) Robertson and
Jones (1976), Croft and Harper (1979) and Papineni (2001). Robertson main-
tains a web page (http://www.soi.city.ac.uk/˜ ser/idf.html) containing the history
of idf, including soft copies of early papers that predated electronic versions
of journal article. Singhal et al. (1996a) develop pivoted document length
normalization. Probabilistic language models (Chapter 11) develop weight-
ing techniques that are more nuanced than tf-idf; the reader will find this
development in Section 11.4.3.

We observed that by assigning a weight for each term in a document, a
document may be viewed as a vector of term weights, one for each term in
the collection. The SMART information retrieval system at Cornell (Salton
1971b) due to Salton and colleagues was perhaps the first to view a doc-
ument as a vector of weights. The basic computation of cosine scores as
described in Section 6.3.3 is due to Zobel and Moffat (2006). The two query
evaluation strategies term-at-a-time and document-at-a-time are discussed
by Turtle and Flood (1995).

The SMART notation for tf-idf term weighting schemes in Figure 6.15 is
presented in (Salton and Buckley 1988, Singhal et al. 1995; 1996b). Not all
versions of the notation are consistent; we most closely follow (Singhal et al.
1996b). A more detailed and exhaustive notation was developed in Moffat
and Zobel (1998), considering a larger palette of schemes for term and doc-
ument frequency weighting. Beyond the notation, Moffat and Zobel (1998)
sought to set up a space of feasible weighting functions through which hill-
climbing approaches could be used to begin with weighting schemes that
performed well, then make local improvements to identify the best combi-
nations. However, they report that such hill-climbing methods failed to lead
to any conclusions on the best weighting schemes.
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